

Vaccines and vaccination against exotic animal diseases 2018

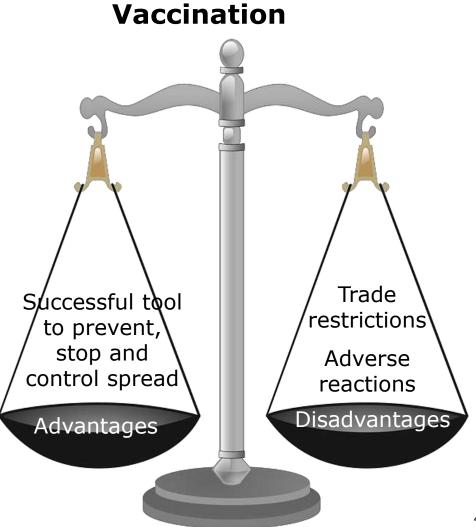
Anette Bøtner

Content

- Control policies and use of vaccines
- Vaccines against FMD/CSF/LSD/ASF:
 - Presence of the disease
 - Availability of vaccines
 - Characteristics of available vaccines
 - Vaccine banks
 - Future perspective for vaccines

Epidemic disease control policies

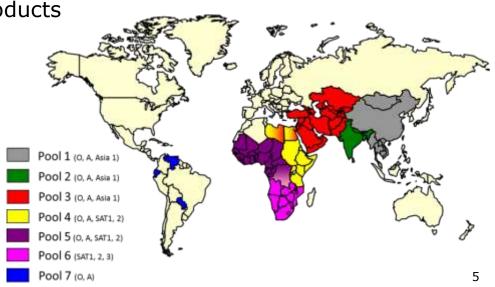
- Enhanced biosecurity
- Stamping out and pre-emptive culling
- Movement restrictions
- Monitoring and surveillance
- Emergency vaccination


There is a clear need to implement prevention and control strategies based on a combination of measures that may include the use of vaccination

Vaccination - tool for disease control

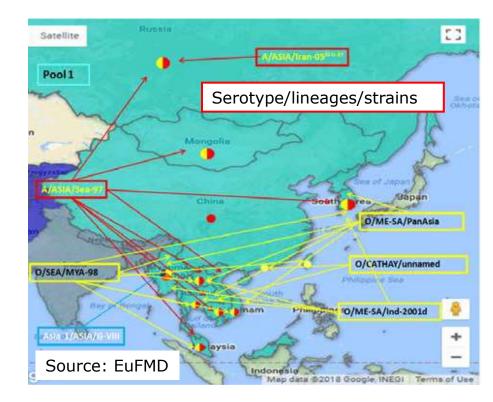
Type:

- Prophylactic
- Emergency:
 - Vaccination-to-live (protective)
 - with post-vaccination monitoring
 - Vaccination-to-kill (suppressive)


The importance of Foot-and-Mouth Disease

- Economically most important infectious disease of farm animals
 - estimated global cost, > US\$ 10,000,000,000 per year
- Outbreak in UK in 2001, cost ca. US \$ 10.000.000.000
- >100 countries affected globally mainly Africa and Asia

Huge barrier to trade in animals/products

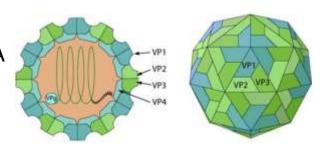

Last outbreak in EU Bulgaria 2010/2011

Complexity of FMD virus

- FMDV exists in 7 serotypes:
 - O, A, Asia1 and C
 - SAT1, SAT2, SAT3
- Distinct lineages within a serotype
- Distinct strains within a lineage

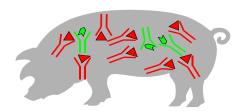
Control of FMD

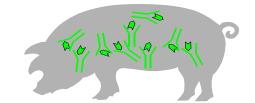
- o Incursion in the EU:
 - Infected herds: culling, cleaning, disinfection
 - o **Zoning**: movement restrictions and increased surveillance
 - Preventive culling and/or emergency vaccination of incontact herds or herds at risk



FMD virus and **DIVA**

FMD virus


- Virions consist of structural proteins (SP) and RNA
- Non-structural proteins (NSP) expressed in the host cell during viral replication
- NSP not present in the virion


DIVA vaccines <u>D</u>ifferentiating <u>I</u>nfected from <u>V</u>accinated Animals

- Infected animals: antibodies against SP and NSP
- Vaccinated animals: only antibodies against SP
- Commercial ELISAs available for detection of antibodies against NSP to demonstrate freedom from infection

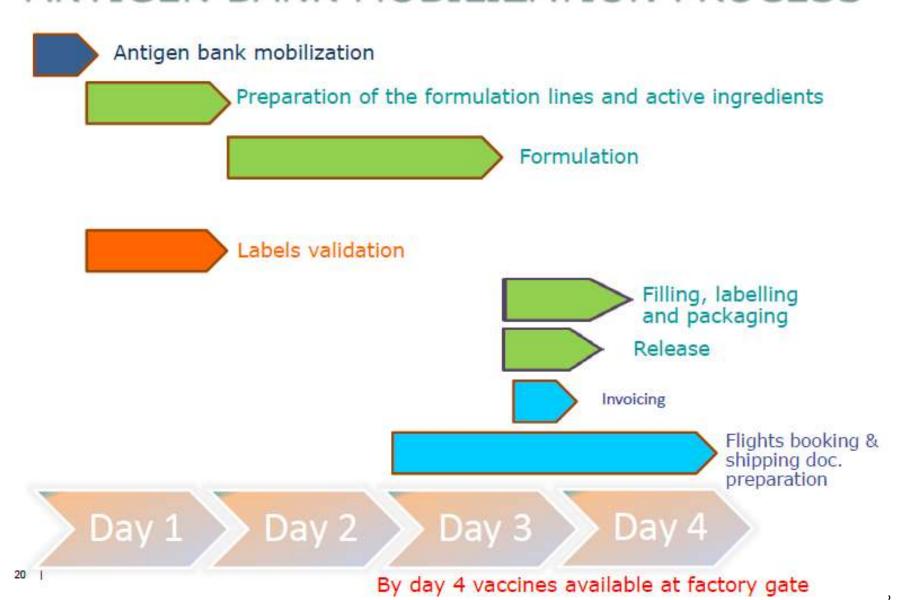
FMDV vaccines

- Chemically inactivated virus (grown in cell culture)
- Vaccine needs to be matched to outbreak virus (not only serotype)
- Duration of protective immunity is very limited (revaccination every 6 months in endemic areas)
- Immunity is dependent on serum antibodies
- DIVA Use of purified vaccines (lacking non-structural proteins)
- Vaccines induce protection against disease in about 1 week

DTU

Persistence of FMD virus

- Clinical signs of disease normally resolve within about 14 days
- However, about 50% of cattle (but not pigs) become long term "carriers" of the virus in the oropharynx
- Carriers defined as having detectable virus more than 28 days postinfection
- Transmission of virus from carrier animals to susceptible hosts is difficult but not impossible (buffalo to cattle in field and by direct transfer of OPF from cattle to cattle)
- Persistence can occur following virus exposure of vaccinated animals (infected without any clinical signs)


FMD vaccine banks

- 4 EU member states and 1 EEA country have national stocks of frozen FMD antigens including 33 million doses, comprising 16 different strains and covering 5 out of 7 serotypes
- The EU has 36 million doses, comprising 16 strains and covering all 7 serotypes
- Management of vaccine stocks is coordinated by EuFMD for all 37 EuFMD members

Antigen banks for Disease Free Countries

ANTIGEN BANK MOBILIZATION PROCESS

Emergency vaccines for FMD in the EU

- Available for all 7 serotypes and certain subtypes
- Directly available from antigen banks in the EU (4 working days):
 - Contracts with commercial manufacturers
 - Formulation of emergency vaccines from frozen, concentrated antigens
 - EU antigen bank managed by DG-SANTE
 - National antigen banks managed by national authorities

Selection of FMDV emergency vaccine strain

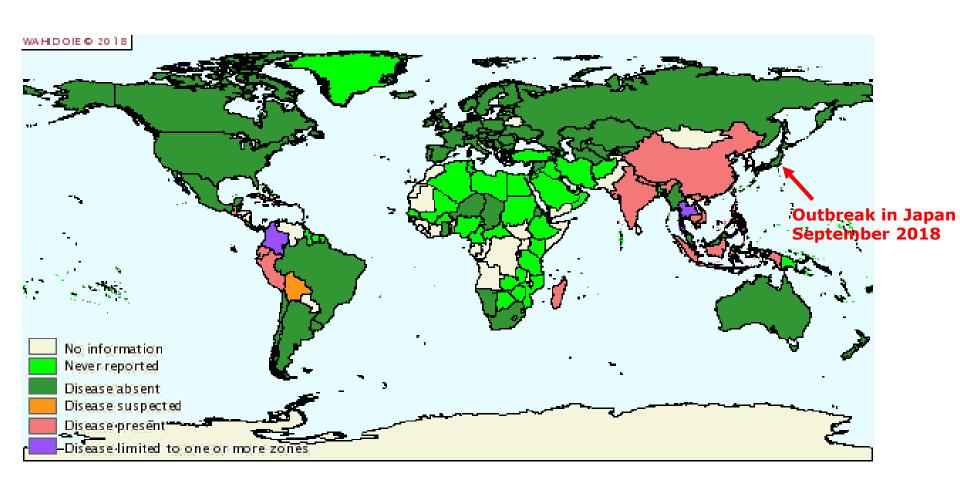
- Circulating FMDV strains (serotype/lineage/strain) are characterized by
 - World Reference Laboratory for FMD (UK)
 - EU-RL for FMD (from 1/1/2019 France and Belgium)
 - Global Network of OIE and FAO Reference Laboratories for FMD
 - Other national reference laboratories for FMD
 - International vaccine manufacturers
- In case of an incursion into the EU, fast characterization of the FMDV field strain (NRL, EU-RL) in combination with prior knowledge gives a good indication of the best suited vaccine strain
- Confirmation of the suitability of a vaccine strain mostly performed by seroneutralisation test (NRL, EU-RL)

Drawbacks of current FMD vaccines

- Large scale growth of highly infectious FMDV under high-containment
 - Potential for virus escape
- Chemical inactivation
 - Use of highly toxic agents
- Vaccine requires maintenance in cold
- Short term duration of immunity (revaccination 2-3 times per year)
- Sub-clinical infection in vaccinated animals
 - apparently healthy vaccinated animals can spread disease
 - low immune response against the non-structural proteins (DIVA challenge)

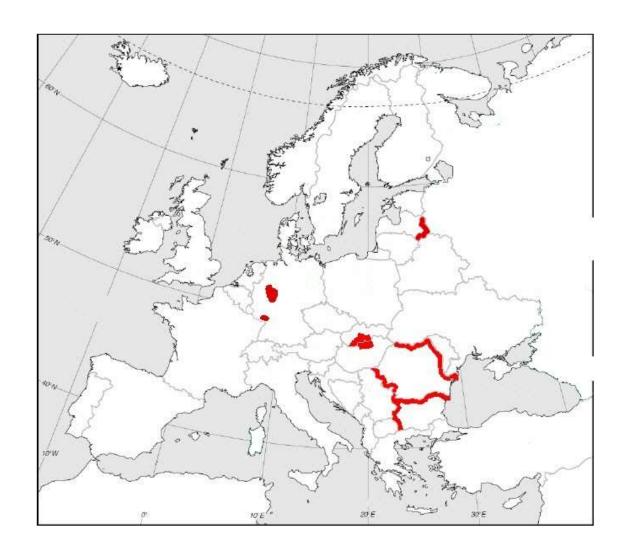
Testing to declare freedom after vaccination

- In a population of vaccinated animals, FMD virus may circulate sub-clinically
- Serological surveillance for antibodies against NSP to detect circulation of FMD virus in a vaccinated herd (NSP not perfect)
- NSP antibody-positive herds are considered as "cases" and destruction of these herds applies to regain the status free of FMD


Novel FMDV vaccine technologies

- Subunit vaccines
- Empty capsids
- DNA vaccines
- Viral vector vaccines

So far no next generation vaccines licensed for FMD

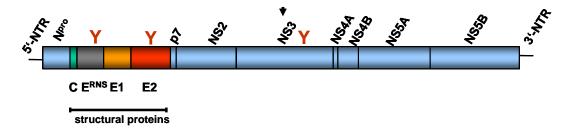


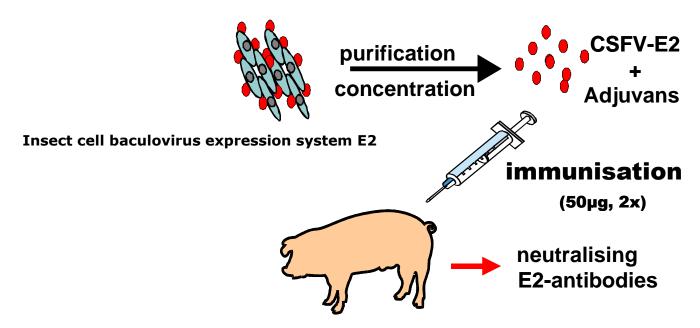
Classical swine fever 2018

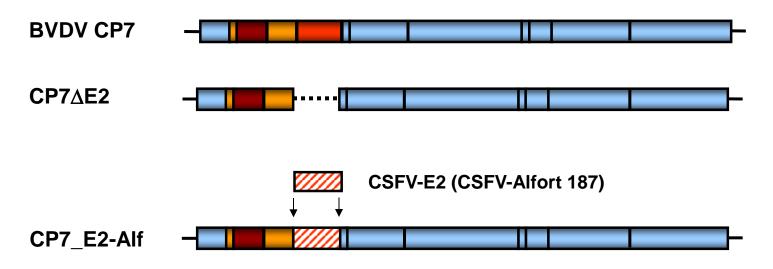
CSF in EU 2012-15

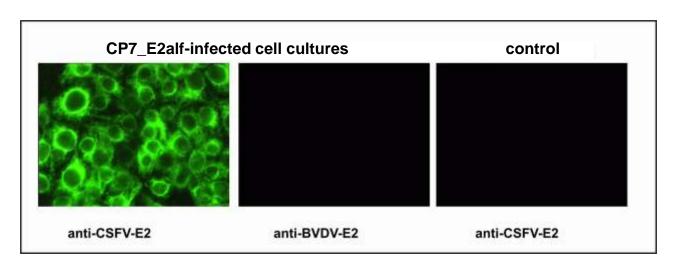
No outbreaks reported in EU since 2015

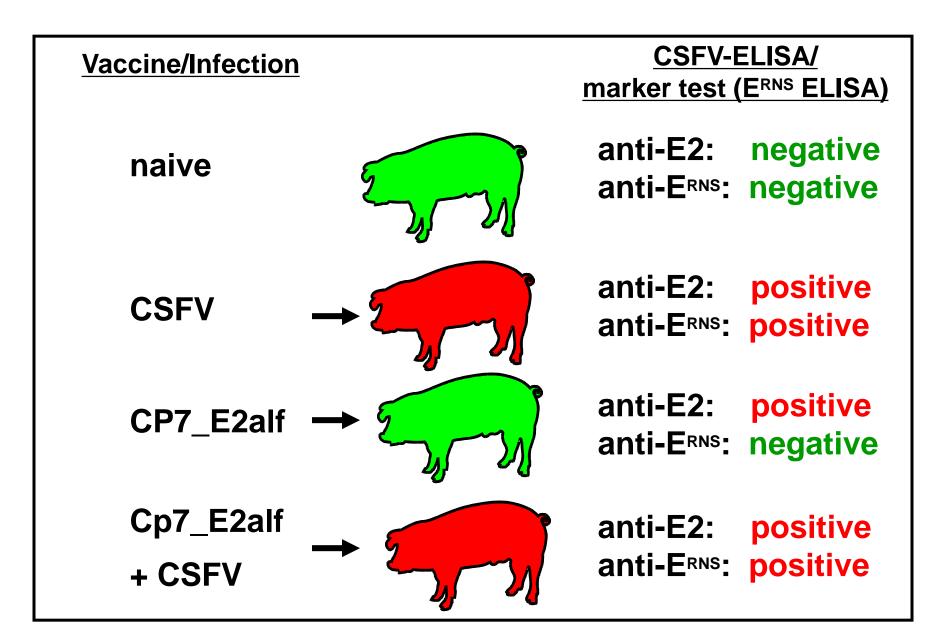
CSF vaccine (C-strain)




- Attenuated live CSFV vaccine, Chinese strain=C-strain
 - 1 x vaccination
 - immunity after 1-7 days
 - oral vaccination possible
 - used for wild boars (all ages)
 - No DIVA


CSFV E2-subunit vaccine




- DIVA (detection of CSFV-specific Erns antibodies)
- 2 vaccinations needed
- Slower development of immunity, → 10-14 days until full protection
- Oral immunisation not possible (wild boar)

Chimeric pestivirus CP7_E2alf

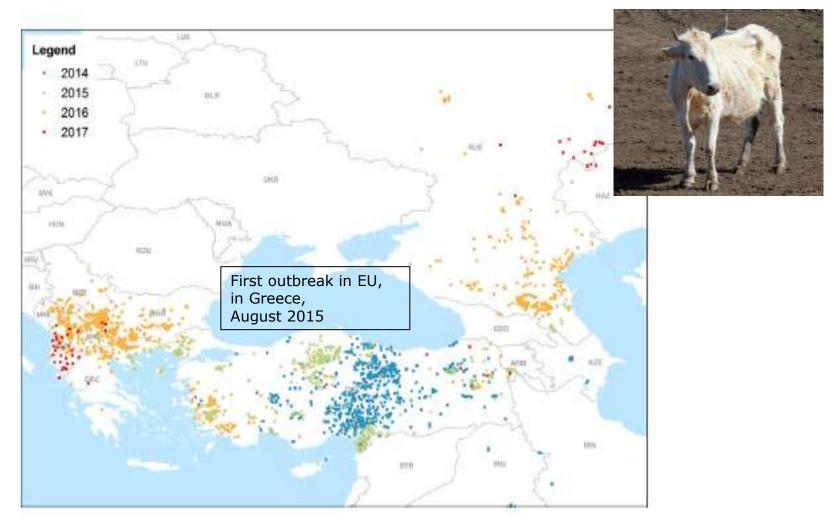
Cp7_E2alf allows DIVA

Chimeric pestivirus CP7_E2alf vaccine

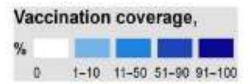
- Safe and efficacious as conventional live attenuated vaccines
- 1 x vaccination
- Immunity within 1 week
- Oral vaccination is possible
 - licensing of "CP7_E2alf" for use in wild boar is still pending
- DIVA
 - Based on the detection of CSFV-specific Erns antibodies
 - BVDV backbone of CP7_E2alf enables genetic differentiation from wild type

by PCR

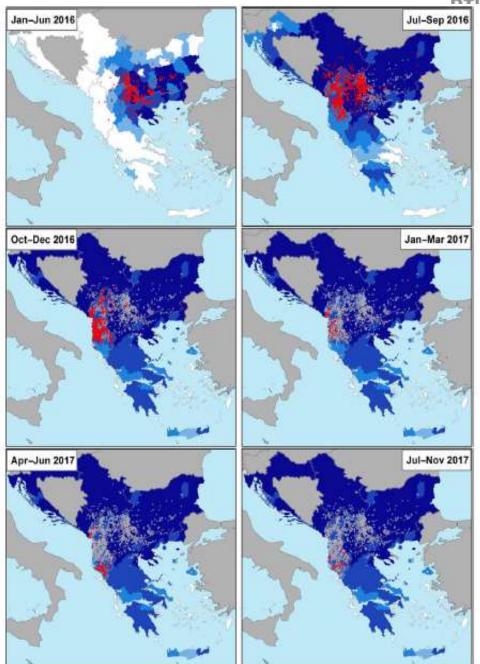
Modified live marker vaccine candidate CP7_E2alf provides early onset of protection against lethal challenge infection with classical swine fever virus after both intramuscular and oral immunization


Immanuel Leifer*, Elke Lange^b, Ilona Reimann*, Sandra Blome*, Sandra Juanola*, Joan Plana Duran*, Martin Beer*.*

Instrume of Diagnostic Virology, Prindrich-Logffer-Institut, Skidger 10, 17402 Grefmuld-Inset Riems, Germany
 Instrume of Infectional State Confere-Institut, Skidger 10, 17493 Greffmuld-Inset Riems, Germany
 Fort Dodge Vereinnung S. Chin Compressos vir Fines "In Blad", 17812 Wild & Brance, State


Protection at 7 days post i.m. vaccination and 14 days after oral application

Lumpy skin disease (LSD)Outbreaks in Europe and Middle East 2014-2017


LSD vaccination Jan 2016-Nov 2017

- New LSD outbreaks
- Previous LSD outbreaks

2016: 7,483 outbreaks

2017: 385 outbreaks

The LSD virus

- Lumpy skin disease virus belong to the *Capripoxvirus*-genus within the *Poxviridae* family
- Other members of the genus are sheeppox virus (SPPV) and goatpox virus (GTPV)
- Serological cross-reaction within the Capripoxvirus-genus

General knowledge regarding LSD

- Natural resistance to LSD is known to occur in cattle
- Typically sub-clinical infection has been demonstrated in one third of infected animals
- Also sub-clinical infected animals become viraemic and may transmit the virus via blood feeding insects
- Main mode of transmission seems to be via these mechanical vectors
- LSD is extremely difficult to control using only stamping-out and other control measures without vaccination
- None of the currently infected countries has been able to limit the spread or eradicate the disease without vaccination

New EFSA Opinion (July 2016)

- 'No vaccination' is the least effective option in reducing LSDV spread.
- Vaccination is recommended in regions at risk of LSDV introduction
- To increase the likelihood of extinction of outbreaks, high withinand between-farm vaccination coverage should be achieved.
- The implementation of vaccination could be accompanied with partial stamping out instead of total stamping out

Vaccines against LSD

- Only live attenuated LSDV vaccines are currently available
- Three commercially available vaccines from South Africa are derived from the LSDV vaccine strain, Neethling strain (used in EU)
- None of these authorised for use within the European Union; none produced under GMP conditions
- Live attenuated LSDV vaccines provide good protection in cattle and is superior to sheeppox virus (SPPV) vaccines
- Live attenuated vaccines generate more broad protective immunity than inactivated vaccines
 - Immunity against LSDV is mainly cell-mediated
- Live attenuated vaccines provide good protection in case a homologous vaccine is used in combination with sufficient vaccination coverage (>80%)
- No DIVA vaccine available

Heterologous vaccines for LSD

- Where distribution of SPPV and GTPV overlaps with LSDV
 - SPPV vaccines may be used for cattle against LSDV if sufficient vaccination coverage and other appropriate control measures are in place
 - GTPV containing vaccines are not yet used against LSD but have been demonstrated to provide good protection against LSDV

Adverse reaction to MLV LSD vaccines

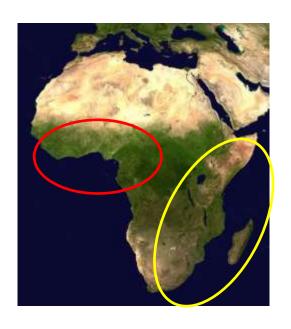
- Live vaccines may cause adverse reactions in some animals
 - Generally skin reaction at injection site and slight reduction in milk production observed for 4-5 days in 2-10% of the animals
 - Two of the South African MLV are reported to cause < 1% side effects in the field
 - Some vaccines reported to cause up to 30% adverse reactions

Surveilllance after vaccination

- No DIVA vaccines
- Active and passive clinical surveillance in vaccinated herds
 - Hampered by adverse reactions resembling disease symptoms
- DIVA-PCR testing (genetic differentiating) of suspected cases
 - "Duplex-PCR" detects and differentiate wild type and vaccine LSDV strains
 - Can be used to confirm cases of adverse reactions/field virus infections

DTU

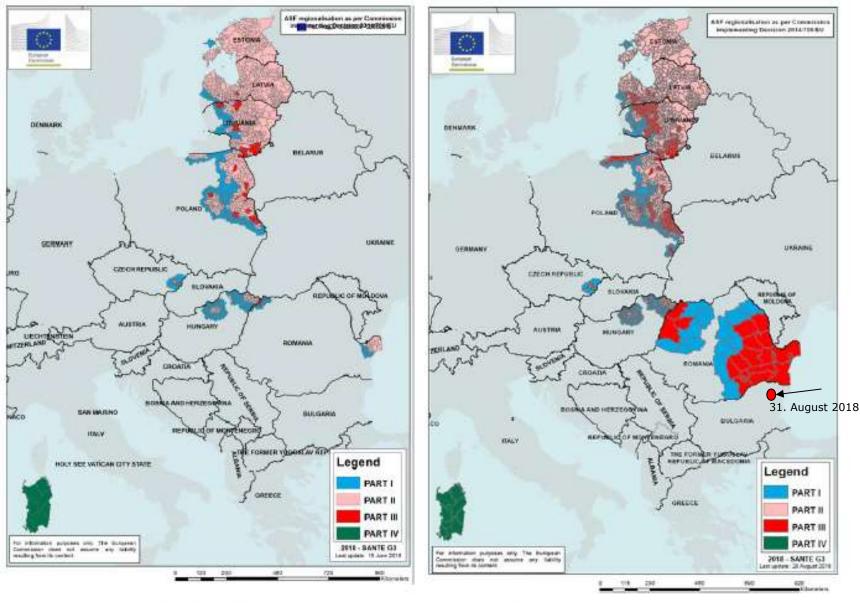
Inactivated vaccines

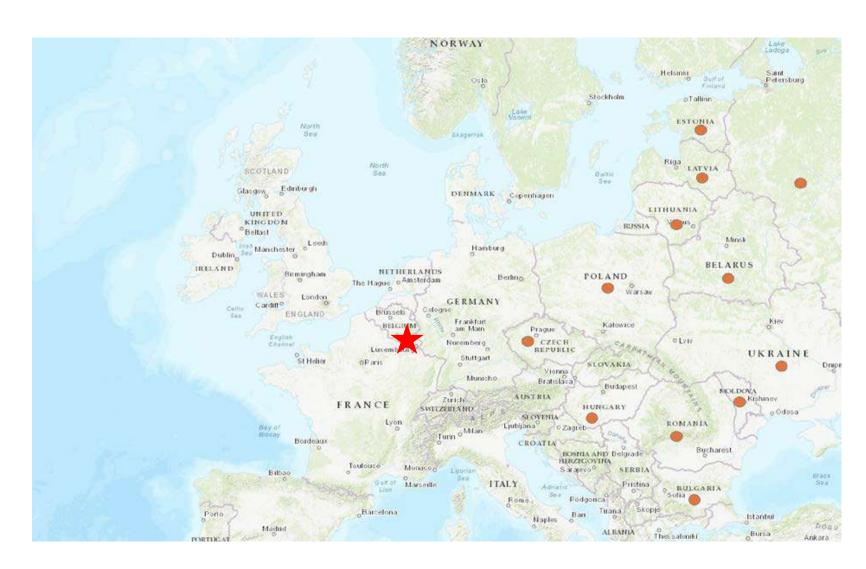

- Safe to use in non-endemic country
- A recent study on SPPV has shown that also inactivated vaccines can confer a protective immunity in sheep, comparable to that provided by a live attenuated SPPV vaccine
- Usually raise higher antibody levels than live vaccines but no cellmediated response
- Booster vaccination needed
- No published studies on the duration of the protection
- Efficacy of inactivated vaccines is under re-evaluation

DTU

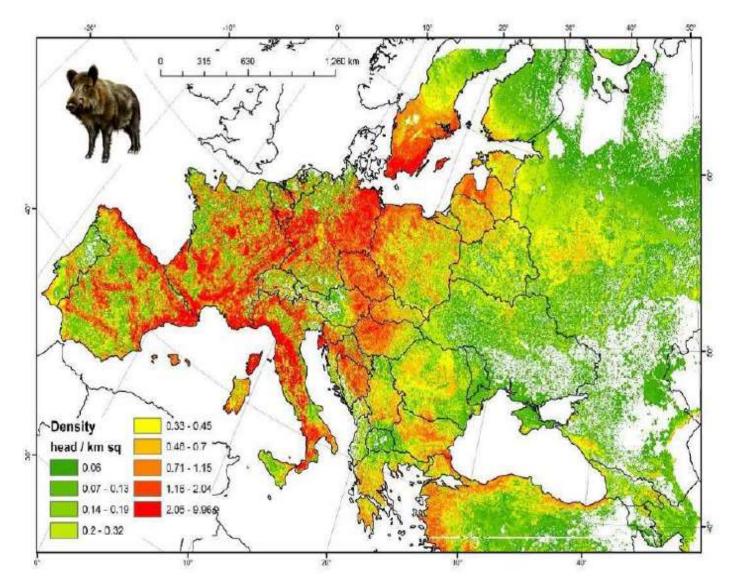
- A (new) threat

Infected areas




36

June 2018 August 2018

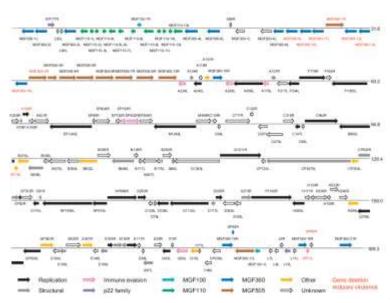


Belgium, 2 wild boar September 13, 2018

Wild boar density

Present ASF in Europe

- ASFV present in Europe causes high mortality
- Uncontrolled spread of disease with wild boar
- High density of wild boar in many areas
- No vaccines available



ASF virus

- A large complex DNA virus
- dsDNA ca. 170.000 193.000 bp
- Virion contains more than 50 proteins
- Large DNA encodes more than 160 proteins

ASFV infection and the immune system

- ASFV interferes with various cellular signaling pathways resulting in inhibition of the host's immune system
- Molecular mechanisms used by ASFV to modulate host immune response are not clear
- Humoral and cellular arm of protective immunity is not clear

Challenges for making an efficacious ASF vaccine

- Inactivated preparations of ASFV do not confer protection
- DNA/"subunit" vaccines only confer partial protection
- MLV vaccines are most promising conferring some level of protection but
 - Little information about ASFV antigen(s) inducing a protective immunity
 - No good heterologous protection
 - Side effects
 - Safety issues (reversion to virulence)
- Protection against reinfection with homologous strain demonstrated
 - So vaccination should be a possible way to obtain protection
- More trial-and-error than rational designed approach at present

Vaccine information 2018

Diseases and	Classical swine	Foot-and-mouth	Lumpy skin	African swine
Vaccines	fever	disease	disease	fever
ТҮРЕ				
Live Inactivated	Live DIVA	Inactivated DIVA	Live	None
DIVA	DIVA	DIVA		
AVAILABILITY				
EU Bank	No	Yes	Yes	No
National banks	No	Yes (some)	Yes (some)	No
From industry	Yes	Yes	Yes	No
Produced in EU	Yes	Yes	No	No
Last use in EU				
SINCE 2000				
Year	2017	2001	2015, 2016, 2017	-
Country (Example)	Latvia (wild boar)	The Netherlands	e.g. Greece, Bulgaria, Croatia	-

Thank you for your attention!

