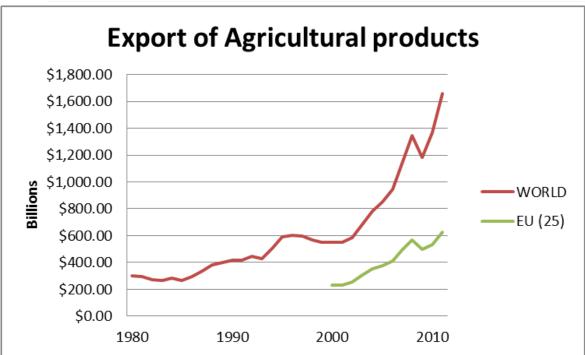
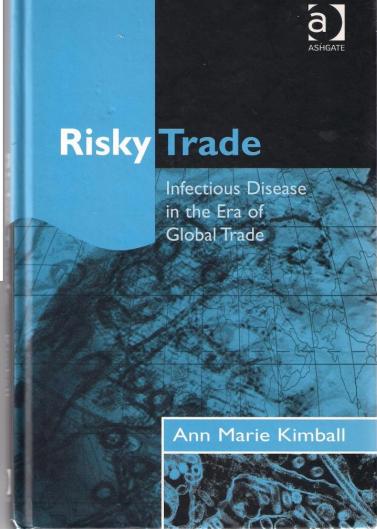
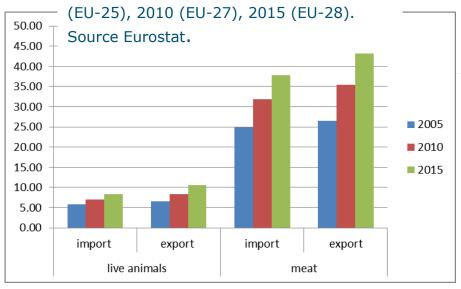
Direct and indirect economic effects of Foot and Mouth Disease and the economics of controlling diseases

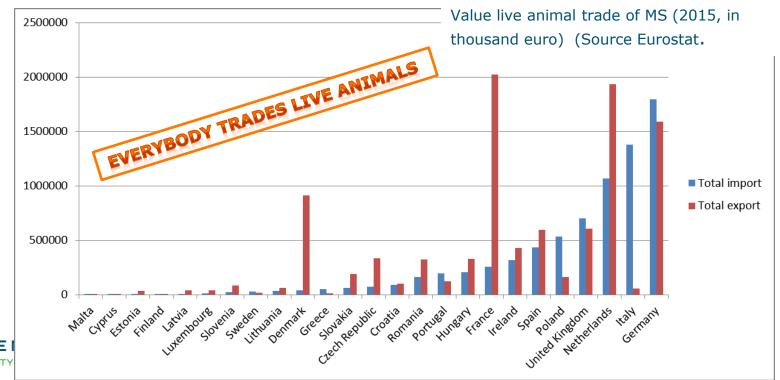

Ron Bergevoet

Ron.Bergevoet@wur.nl



"the World has become a global market place"


Source: WTO, international trade statistics (2012)

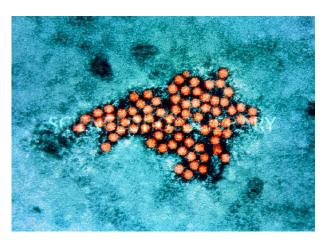

Current prices

Value of trade (in billion euros), in 2005

History of recent outbreaks in the Netherlands in the period 1996-2014

Disease	# Infected Farms	# Culled	Losses ¹	
CSF (1997-1998)	492	Animals: 1.8 million (of which 1.1 million pre-emptively)	€1,269 million	(<u>Elbers et al., 1999</u>)
FMD (2001)	26	Animals: 270,000 (of which 200,000 after vaccination)	€900 million	(<u>Huirne et al., 2002</u>)
AI (2003)	255	Farms: 1,349 commercial and 16,490 hobby farms	€270 million	(<u>Backer et al., 2011</u>)
Bluetongue (2006-2007)	470 (2006) 11017 (2007)	No animals were compulsorily culled	€200 million; the cattle sector suffered 86% of these losses	(Velthuis et al., 2010)
Q fever (2008- 2010)	98	Animals: 58,150	€307 million	(van Asseldonk et al., 2013a)

Socio-economic effects of trans-boundary animal diseases and its control

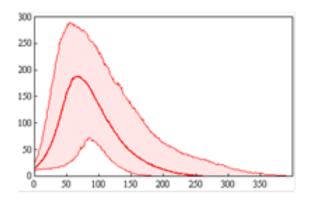

are determined by:

- the probability of occurrence of an outbreak in one or more MS's,
- 2. the economic effects of the outbreak and the control measures and the reaction of stakeholders/public and trade partners.

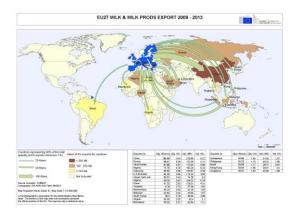
The probability of occurrence of an outbreak in one or more MS's

Probability of occurrence of an outbreak

Table. Number of reported outbreaks of epidemic livestock disease in the EU, 2010-2016


Source: (ADNS)

	2010	2011	2012	2013	2014	2015	2016	2017
Foot-and-mouth disease		12						
Bluetongue	175	39	332	6190	9414	607	134	4474
Classical swine fever		5	3					
Highly pathogenic avian influenza (HPAI) source ADNS)	2			6	10	70	394	820
ASF (source ADNS)				109 (all IT)	74	58	71	142


The economic effects of an outbreak.

Determined by:

- 1. the outbreak (the size and duration of the outbreak)
- 2. the control measures taken by Competent Authorities
- 3. the reaction of stakeholders/public and trade partners

Economic effects of the outbreak

Direct costs:

- Compensation for depopulated animals
- Depopulation (taxation, culling, transport & destruction, cleansing & disinfection)
- Tracing
- Screening
- Vaccination
- Additional surveillance in movement restriction zone

Consequential losses

- Business interruption
- Losses related to established movement restriction zones
- Repopulation of the farm.
- Losses from emergency vaccination

Economic effects of an outbreak

Direct costs:

Costs born by government (or PPP) & by EU

- Compensation for depopulated animals
- Depopulation (taxation, culling, transport & destruction, cleansing & disinfection)
- Tracing
- Screening
- Vaccination
- (Additional surveillance in movement restriction zone)

 Costs born by directly
- Indirect costs

affected farmers

- Business interruption
- Losses related to established movement restriction zones
- Repopulation of the farm.
- Losses from emergency vaccination

Consequential losses

- Export market losses
- Ripple effects.
 - upstream and downstream along the livestock value chain
- Spill-over effects.
 - During outbreaks e.g. tourism and other services

Arrangements to cover <u>direct</u> losses

- Member State
 - Public finance from the national budget (most MS's)
 - Public private partnerships: DE, NL, BE (farmers collectively participate in contributing to direct losses)
- EU contribution (max 50 % co-financing of the eligible costs) (Regulation (EU) 652/2014 art. 8)

Arrangements to cover consequential losses

- Affected stakeholders have to take the losses themselves
- Except:
 - Insurance and Mutual
 - Private (e.g. DE animal disease insurance)
 - With and without MS and or EU support (e.g. FR FMSE)
 - In case of large crisis:
 - National crisis management systems of MS together;
 and
 - EU: animal diseases and loss of consumer confidence due to public, animal or plant health risks (Article
 220 of CMO Regulation (EU) 1308/2013),

Control of FMD in the EU

- Prophylactic vaccination in EU has been banned in the EU since 1992 (Directive 90/423/EEC)
- EU minimal measures:
 - culling of infected herds,
 - pre-emptive slaughter of contact herds,
 - establishment of control and surveillance zones
- Additional measures:
 - Ring culling and/or
 - Emergency vaccination
 - Delayed culling
 - Vaccination to live

2001 FMD outbreak in NL

- EU minimal measures:
 - culling of infected herds,
 - pre-emptive slaughter of contact herds,
 - establishment of control and surveillance zones
- Additional measures:
 - Ring culling and/or
 - Emergency vaccination
 - Delayed culling
 - Vaccination to live

2001 FMD outbreak in NL

- 26 outbreaks were detected.
- All susceptible animals on approximately 1800 farms were vaccinated. All farms subsequently were depopulated.
- In total, approximately 260,000 animals were killed.

(Bouma, et. al., Prev Vet Med. 2003, 20; 57 (3) :155-66.)

Costs of the 2001 FMD outbreak in NL

Costs born by government (or PPP) & by EU

Total for Dutch society:

€900 million or 0.3% GNP

• Direct costs:

€ 90 million

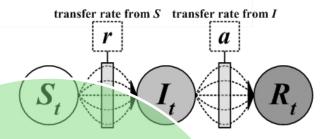
e.g. enforcement costs, compensation of culled animals, screening etc.

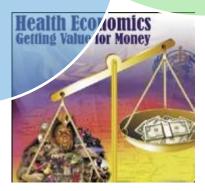
Indirect and export market losses: € 320 million

Other parts of the livestock chain: € 215 million

Tourism and recreation sector:
 € 275 million

Source (CPB 2001 cited by Huirne et al., 2002)


Change of policy: possible consequences
The example of the Netherlands with a
change to "vaccination to live" in case of
an FMD outbreak

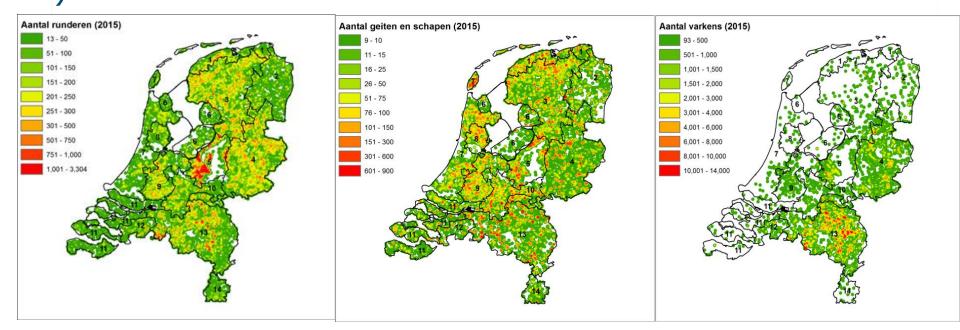

Approach to develop a control strategy

Epidemiological modelling

Economic evaluation

Policy change from culling toward vaccination to live

- What has changed in the NL?
 - No more images of large scale culling of animals
 - No welfare slaughter with destruction but welfare slaughter with animals and products made available for consumption
 - Vaccination to live strategy


Export market losses

- The costs of animals and products, that because of an outbreak cannot be exported.
 - During the outbreak and after completion of screening until EU lifts export bans
 - After this period, this concerned the third countries market for live animals, meat, meat products, milk and milk products from infected countries/compartments for another 3 months without vaccination and for another 6 months with vaccination-to-live. (OIE terrestrial code article 8.5.8)
 - (Are markets after this period still available as before the outbreak?)
 - Vaccinated animals cannot be moved except to slaughterhouse

Optimal strategy influenced by density of farms

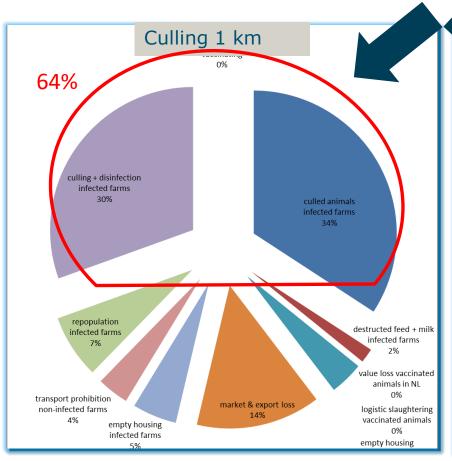
)

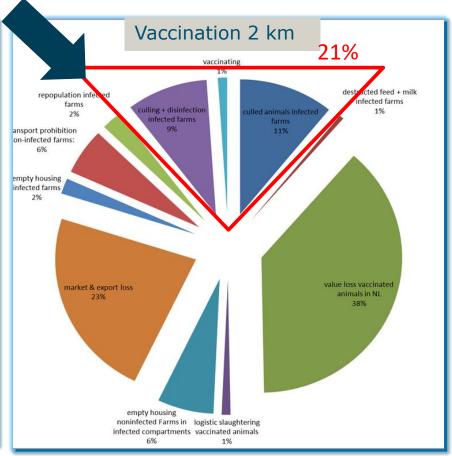
Bovine Sheep and goats Pigs

Distribution of animals in NL (#animals/km2) Source: CBS/Landbouwtelling

Consequences of the different strategies: FMD PDLA (>4 farms/km²): Gelderse vallei

	NUMBER OF CULLED FARMS			VEEK OF ECTION	TOTAL COSTS INCL COSTS OF OPERATION (in M€)		
	50%	CI(5%-95%)	50%	CI(5%-95%)	50%	CI(5%-95%)	
cul1	971	(206-3217)	9	(4-15)	236	(94-615)	
vac2	260	(70-707)	10	(5-17)	227	(99-526)	


SPLA area Friesland


	NUMBER OF CULLED FARMS			LAST WEEK OF DETECTION			TOTAL COSTS INCL COSTS OF OPERATION		
	50%	5%	95%	50%	5%	95%	50%	5%	95%
EU	7	2	46	3	1	12	58	48	102
cul1	56	2	295	3	1	8	62	48	109
vac2	30	2	117	3	1	8	61	48	108

Distribution of losses (DPLA area)

Direct losses

Conclusions

- Economic effects of trans-boundary animal diseases are determined by frequency of introduction, size of the outbreaks and the control strategy
- Outbreaks of trans-boundary animal diseases and its control have large economic effects in an affected MS
 - Consequential losses are largest part of the effects and may vary with different strategy
- Optimal strategy is determined by "situation on the ground", e.g. density of farms in the infected area, and export position of MS.
- Different strategies with the same total costs can have different consequences for different stakeholders

Recommendations

- Support prevention of introduction in MS and early detection
 - Preventive measures at border and on-farm
 - Incentives for early reporting
- Cost and responsibility sharing arrangements and insurance systems need to be further developed
- Preparation and intensive communication between CA and stakeholders in "peace time"

Thank you for your attention

